Abstract
We consider a three-mode optomechanical system where two cavity modes are coupled to a common mechanical oscillator. We focus on the resolved sideband limit and illustrate the relation between the significant parameters of the system and the instantaneous-state mean phonon number of the oscillator cooled to the ground state, particularly at the early stage of the evolution. It is worth noting that the optical coupling sets up a correlation between the two cavity modes, which has significant effect on the cooling process. Using numerical solutions, we find that the inter-cavity coupling will decrease the cooling effect when both cavities have the same effective optomechanical coupling. However, when the effective optomechanical couplings are different, the cooling effect will be strongly improved by selecting appropriate range of inter-cavity coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.