Abstract

We derive the leading non-global logarithms (NGLs) of ratios of jet masses m_{1,2} and a jet energy veto \Lambda due to soft gluons splitting into regions in and out of jets. Such NGLs appear in any exclusive jet cross section with multiple jet measurements or with a veto imposed on additional jets. Here, we consider back-to-back jets of radius R produced in e^+e^- collisions, found with a cone or recombination algorithm. The leading NGLs are of the form \alpha_s^2 \ln^2(\Lambda/m_{1,2}) or \alpha_s^2\ln^2(m_1/m_2). Their coefficients depend both on the algorithm and on R. We consider cone, \kt, anti-\kt, and Cambridge-Aachen algorithms. In addition to determining the full algorithmic and R dependence of the leading NGLs, we derive new relations among their coefficients. We also derive to all orders in \alpha_s a factorized form for the soft function S(k_L,k_R,\Lambda) in the cross section \sigma(m_1,m_2,\Lambda) in which dependence on each of the global logs of \mu/k_L, \mu/k_R and \mu/\Lambda determined by the renormalization group are separated from one another and from the non-global logs. The same kind of soft function, its associated non-global structure, and the algorithmic dependence we derive here will also arise in exclusive jet cross sections at hadron colliders, and must be understood and brought under control to achieve precise theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.