Abstract
A novel double network (DN) hydrogel with highly enhanced toughness has been prepared using reversible addition-fragmentation transfer (RAFT)-modified poly(2-acrylamide-2-methylpropane sulfonic acid) (PAMPS) as the first network, and polyacrylamide (PAM) as the second network. The mechanical properties of the first-network-modified PAMPS/PAM DN hydrogels have been studied and the new DN hydrogel shows remarkably high fracture energy (3.3 MJ m-3) in tensile deformation, which is nearly 9 times larger than that of the unmodified PAMPS/PAM DN hydrogel. Synchrotron radiation small-angle X-ray scattering (SAXS) was used to study the microstructures of the first-network single network (SN) and DN hydrogels. It was demonstrated by the SAXS results that the introduction of the RAFT agent into the first network enlarges the size of the ordered cross-linked domains in the SN hydrogel. The large ordered domains are beneficial for entanglement and interpenetration between the first and the second networks to dissipate concentrated stress more efficiently, resulting in the enhanced toughness of the first-network-modified DN hydrogels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.