Abstract

We constructed a double-modulation, reflection-type terahertz (THz) ellipsometer for precise measurement of the thickness of a paint film which is coated on a metal surface and which is not transparent to visible or mid-infrared light. The double-modulation technique enabled us to directly obtain two ellipsometric parameters, Δ(ω) and Ψ(ω), as a function of angular frequency, ω, with a single measurement while reducing flicker noise due to a pump laser. The bias voltage of a photoconductive antenna (PCA) used as a THz pulse emitter was modulated at 100 kHz, and a first lock-in amplifier (LA1) was connected to the output of an electro-optic (EO) signal-sampling unit. In addition, a wire-grid polarizer (WGP) was rotated at 100 Hz to conduct polarization modulation with a frequency of 200 Hz. The output signal from LA1 was fed into a second lock-in amplifier (LA2) that worked in synchronization with the rotating WGP (RWGP). By operating LA2 in a quadrature phase-detection mode, we were able to obtain in-phase and out-of-phase signals simultaneously, from which the two ellipsometric parameters for an isotropic sample could be derived at the same time while cancelling common-mode noise. The lower detection limit of the thickness measurement and the relative standard deviation (RSD) of a black paint film coated on an aluminum substrate were 4.3 µm and 1.4%, respectively. The possibility of determining all elements of the Jones matrix for an anisotropic material is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.