Abstract

BackgroundNucleoplasmin 2 (npm2) is an essential maternal-effect gene that mediates early embryonic events through its function as a histone chaperone that remodels chromatin. Recently, two npm2 (npm2a and npm2b) genes have been annotated in zebrafish. Thus, we examined the evolution of npm2a and npm2b in a variety of vertebrates, their potential phylogenetic relationships, and their biological functions using knockout models via the CRISPR/cas9 system.ResultsWe demonstrated that the two npm2 duplicates exist in a wide range of vertebrates, including sharks, ray-finned fish, amphibians, and sauropsids, while npm2a was lost in coelacanth and mammals, as well as some specific teleost lineages. Using phylogeny and synteny analyses, we traced their origins to the early stages of vertebrate evolution. Our findings suggested that npm2a and npm2b resulted from an ancient local gene duplication, and their functions diverged although key protein domains were conserved. We then investigated their functions by examining their tissue distribution in a wide variety of species and found that they shared ovarian-specific expression, a key feature of maternal-effect genes. We also demonstrated that both npm2a and npm2b are maternally-inherited transcripts in vertebrates, and that they play essential, but distinct, roles in early embryogenesis using zebrafish knockout models. Both npm2a and npm2b function early during oogenesis and may play a role in cortical granule function that impact egg activation and fertilization, while npm2b is also involved in early embryogenesis.ConclusionThese novel findings will broaden our knowledge on the evolutionary history of maternal-effect genes and underlying mechanisms that contribute to vertebrate reproductive success. In addition, our results demonstrate the existence of a newly described maternal-effect gene, npm2a, that contributes to egg competence, an area that still requires further comprehension.

Highlights

  • Nucleoplasmin 2 is an essential maternal-effect gene that mediates early embryonic events through its function as a histone chaperone that remodels chromatin

  • We investigated the evolution, phylogenetic relationship, as well as biological functions of npm2a and npm2b in a wide range of vertebrate species to broaden our knowledge on the evolution of maternal-effect genes and the underlying mechanisms that contribute to reproductive success in vertebrates

  • We found that species from various vertebrate groups, including chondrichthyans, ray-finned fish, lobe-finned fish, amphibians, as well as sauropsids contained both Npm2a and Npm2b sequences

Read more

Summary

Introduction

Nucleoplasmin 2 (npm2) is an essential maternal-effect gene that mediates early embryonic events through its function as a histone chaperone that remodels chromatin. All gene and protein nomenclature written in this manuscript will be based on that of zebrafish regardless of species for simplification purposes. Another gene, nucleoplasmin 2 (npm2), belongs to the family of nucleoplasmins/nucleophosmins that was demonstrated in zebrafish to be maternally-inherited at both protein and mRNA levels, whereby both play important roles in early development [5]. Nucleoplasmin 2 (npm2), belongs to the family of nucleoplasmins/nucleophosmins that was demonstrated in zebrafish to be maternally-inherited at both protein and mRNA levels, whereby both play important roles in early development [5] This protein was identified and defined as a nuclear chaperone in Xenopus [6, 7]. Npm is one of the first identified maternal-effect genes in mouse whereby its deficiency results in developmental defects and eventual embryonic mortality [11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call