Abstract

Double-lumen endotracheal tubes (DL-ETT) and bronchial blockers (BB) are frequently used to allow one-lung ventilation (OLV) during video-assisted thoracic surgery (VATS). Recently, faster lung collapse has been documented with a BB than with a DL-ETT. The physiologic mechanisms behind this faster collapse remained unknown. We aimed to measure ambient air absorption (Vresorb) and intra-bronchial pressure (Pairway) into the non-ventilated lung during OLV using DL-ETT and BB. Patients undergoing VATS and OLV for lung resection were randomly assigned to have measurements made of Vresorb or Pairway within the non-ventilated lung using either a DL-ETT or BB. Thirty-nine patients were included in the analyses. The mean (standard error of the mean [SEM]) Vresorb was similar in the DL-ETT and BB groups [504 (85) vs 630 (86) mL, respectively; mean difference, 126; 95% confidence interval [CI], -128 to 380; P = 0.31]. The mean (SEM) Pairway became progressively negative in the non-ventilated lung in both the DL-ETT and the BB groups reaching [-20 (5) and -31 (10) cmH2O, respectively; mean difference, -11; 95% CI, -34 to 12; P = 0.44]at the time of the pleural opening. During OLV before pleural opening, entrainment of ambient air into the non-ventilated lung occurs when the lumen of the lung isolation device is kept open. This phenomenon is prevented by occluding the lumen of the isolation device before pleural opening, resulting in a progressive build-up of negative pressure in the non-ventilated lung. Future clinical studies are needed to confirm these physiologic results and their impact on lung collapse and operative outcomes. www.clinicaltrials.gov (NCT02919267); registered 28 September 2016.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call