Abstract

A double-leaf microperforated panel space absorber (DLMPP) is composed of two microperforated panels (MPPs) placed in parallel with an air-cavity in-between, without a back wall or any backing structure. This was proposed as a space sound absorber, which can be used for a sound absorbing screen or partition. A conventional MPP absorber with a rigid back wall is effective only around its resonance frequency, which is usually at middle frequencies, and not effective at low frequencies. However, a DLMPP can be effective also at low frequencies, because an additional sound absorption is produced by its acoustic flow resistance. In the authors’ previous work, theoretical analyses on the acoustic properties of a DLMPP were carried out using a simplified electro-acoustical equivalent circuit model. However, the equivalent circuit model includes an approximation, and more sophisticated theory is required for a better prediction and detailed discussion. In this paper, a revised theory for a DLMPP is presented: A Helmholtz integral formulation is employed to obtain a rigorous solution for more precise prediction of the absorptivity of a DLMPP. The result of the present revised theory is compared with that of the equivalent circuit model, and the difference between them is discussed. A parametric survey is made through numerical examples by the present revised theory to discuss its acoustic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.