Abstract
Microwave absorption characteristics of double layer of barium hexaferrite attached on the silica to from a composite on the basis of wave propagation theory have been investigated. Barium hexaferrite, BaFe12O19, was synthesized through ceramic method from stoichiometric mixtures of BaCO3 and Fe2O3 as precursors. The mixture was pelletized under the pressure of 10 MPa and sintered at 1100 °C for 5 hours. Silica in the forms of powder was purified by using HCl. The crystal structure of the samples was characterized using X-ray diffraction (XRD), microstructure was examined using scanning electron microscope (SEM), hysteresis curves recorded by PERMAGRAPH techniques, whereas the microwave absorbing properties for X-band was recorded using a vector network analyzer (VNA). Relative complex permeability and permittivity, and reflection loss values were calculated at given thickness according to transmittance line theory within the range 8.2–12.4 GHz. Based on this study, the layer dimension and frequency that results in low reflection loss can be estimated from the material properties of the barium hexaferrite/silica composite material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Materials Science Forum
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.