Abstract

Abstract This work introduces a double-layer metasurface to isolate the fundamental shear horizontal wave (SH0 wave). The metasurface is designed to split the SH0 wave source into two parts and then manipulate the two waves to be out of phase and have equal amplitude upon reaching the end of the metasurface. This results in interference cancellation, effectively blocking the propagation of SH0 waves into the protected zone. Firstly, the metasurface is designed theoretically, utilizing rectangular strips to constitute the substructure. Subsequently, finite element simulations are conducted to verify the correctness of the theoretical design. Finally, the metasurface is fabricated using 3D printing, and its performance is evaluated through experiments. The results indicate that the metasurface can function as a cage for SH0 waves, trapping different types of SH0 waves located at any position within the cage. Furthermore, when the source of SH0 waves is positioned outside the cage, the metasurface can effectively impede their propagation into the interior region of the cage. The proposed double-layer metasurface provides a simple approach to blocking SH0 waves, which may have potential applications in practical engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.