Abstract

Total cross sections for the double ionization of He and Li atoms by the impact of H+, He2+ and Li3+ are calculated at intermediate and high energies within two-step models. The double ionization of He by the impact of other bare projectiles at a fixed energy is obtained as well. Single ionization probabilities are calculated within the continuum distorted wave –eikonal-initial-state (CDW–EIS) approximation. The required atomic bound and continuum wave functions are evaluated by numerically solving the atomic wave equation with an optimized potential model (OPM). Correlation between events is introduced by considering ion relaxation. The final state electronic correlation is considered by means of the so-called Gamow factor. We compare the transition probabilities resulting from our approach with those resulting from the use of a Rootham–Hartree–Fock initial state and a Coulomb continuum state with an effective charge. We find that the use of OPM waves gives a better agreement with the experimental results than with Coulomb waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.