Abstract

Potassium ion channels selectively permeate K+, as well as Rb+ and Cs+ to some degree, while excluding Na+ and Li+. Conformations of alkali metal complexes of Ac-Tyr-NHMe, a model peptide of the selectivity filter in a K+ channel, were previously found to correlate with the permeability of alkali metal ions to a K+ channel by cold ion trap infrared spectroscopy. With an additional temperature-controlled ion trap, we examined the conformations of the alkali metal complexes, allowing the ions to collide with a He buffer gas at different temperatures, prior to spectroscopic investigation. The conformational distribution of the K+-peptide complex shows the most significant variation with temperature, which suggests that this complex has more flexibility when complexed with K+ and suggests lower barrier heights than other metal-peptide complexes. The variability of the conformational distribution with temperature for the ions follows the same order of ion permeability of a K+ channel. This work demonstrates that the additional temperature-controlled ion trap is a powerful tool to explore the conformational landscape of flexible molecular systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.