Abstract
The majority of patients with pancreatic cancer are resistant to gemcitabine. One of the mechanisms involved is the anti-apoptotic ability of these cells. The median lethal dose (LD50) of gemcitabine for PANC-1 cells was higher than that for MiaPaCa-2 cells and the former had higher nuclear factor-κB (NF-κB) and X-linked inhibitor of apoptosis protein (XIAP) levels. NF-κB contributes to the inhibition of apoptosis by the downregulation of downstream genes, such as XIAP and Bcl-2 and it confers chemoresistance. The two cell lines were infected with NF-κB p65 small interfering RNA (siRNA). p65 protein was effectively downregulated accompanied by the downregulation of XIAP protein. The combination treatment with gemcitabine and p65siRNA increased the apoptotic rates in both cell lines; however, this was not sufficient. XIAP is involved in apoptosis to a greater extent compated to Bcl-2. XIAP may serve as another factor affecting the sufficiency of chemotherapy. XIAP siRNA was designed to knockdown XIAP. MiaPaCa-2 and PANC-1 cells were co-infected with XIAP siRNA and p65 siRNA. XIAP and p65 proteins were effectively downregulated and the gemcitabine-induced apoptotic rates were significantly increased. These results suggest that XIAP and NF-κB are two important factors conferring the chemoresistance of pancreatic cancer cells, and that their downregulation via RNAi effectively enhances the chemosensitivity of pancreatic cancer cells to gemcitabine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.