Abstract
Polyacrylate/nano-TiO2 composite latex was prepared via double in-situ polymerization using acrylamide (AM), vinyl acetate (VAc), butyl acrylate (BA) and methyl methacrylate (MMA) as monomers, tetrabutyl titanate (Ti(OBu)4) as precursor of TiO2. The morphology, structure and distribution of composite latex were characterized by Transmission Electron Microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS) and X-Ray Diffraction (XRD). The thermal stability, anti-yellowing and antibacterial properties of composite latex were also investigated. The results showed that nano-TiO2 consisted in polyacrylate latex and it was located on the surface of latex particles. The average particle size of polyacrylate/nano-TiO2 composite latex was 156.6 nm, which was bigger than that of pure polyacrylate (125.1 nm). The introduction of nano-TiO2 improved the thermal stability, anti-yellowing and antibacterial properties of the latex film. At last, the polyacrylate/nano-TiO2 composite latex was applied in leather finishing. Compared with polyacrylate latex, the properties of the leather finished by polyacrylate/nano-TiO2 composite latex were enhanced: water vapor permeability increased by 58% and water uptake decreased by 3.52%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.