Abstract

The main goal of this study was to develop a better light microscopic procedure for quantitative study of the cellular co-localization of neuropeptides in adult human brain tissue. To reach this goal, we opted for a method (proved to be optimal on rat brain) in which sections were double immunolabeled with two different fluorophore-conjugated secondary antibodies and analyzed with a confocal laser scanning fluorescence microscope. One of our main problems faced was a strong autofluorescence of the sections, mainly caused by lipofuscin granules normally present in adult human brain tissue, which made any analysis of specific fluorescence impossible. This problem could be solved by staining the sections after immunolabeling with the dye Sudan Black B, which completely blocked this autofluorescence. The complete optimized procedure that we eventually developed can be summarized as follows. After a relatively short fixation time (6-14 days) in 4% freshly depolymerized paraformaldehyde, the resected brain tissue can best be stored in a 30% sucrose solution supplemented with 0.05% NaN3 at 4C. Stored under these conditions, cryosections from the tissue still reveal good histology and allow successful immunocytochemical staining after a period of 6 months. Double immunolabeling is done by incubating cryo- or paraffin sections in a mixture of two primary antibodies directed against the targeted antigens, followed by incubation with two different fluorophore-conjugated secondary antibodies. Amplification with a biotinylated secondary antibody followed by fluorophore-conjugated streptavidin is possible. Finally, the sections are stained with Sudan Black B, mounted in plain 80% Tris-buffered glycerol, and studied by confocal laser scanning fluorescence microscopy. Sections processed in this way are well suited for qualitative and quantitative analyses of co-localized neuropeptides in human brain tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.