Abstract

Based on the two-step phase-shifting interference (PSI) technique in fractional Fourier transform (FRT) domain and random mixed encoding, we present a new scheme for double image encryption. In the proposed scheme, information of each primitive image is recorded in two intensity interference patterns of FRT spectra by PSI technique, from which an encrypted image for each primitive image can be digitally derived. Random mixed encoding is then employed to divide and recombine both encrypted images into a single synthetic encrypted image. During the mixed encoding process, repositioning operations based on shift-variance of FRT are performed on the encrypted images to realize the spatial separation of decoded results in the output plane. By inverse FRT with correct fractional order, any of the primitive images can be easily retrieved directly from the synthetic encoded image with the corresponding phase encoding key. Crosstalk effect due to the overlapping of decoded images is alleviated for their spatial separation. Computer simulation and experimental results are presented to verify the validity and efficiency of our scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.