Abstract
<p style='text-indent:20px;'>In this paper, we consider a general reaction-diffusion system with nonlocal effects and Neumann boundary conditions, where a spatial average kernel is chosen to be the nonlocal kernel. By virtue of the center manifold reduction technique and normal form theory, we present a new algorithm for computing normal forms associated with the codimension-two double Hopf bifurcation. The theoretical results are applied to a predator-prey model, and complex dynamic behaviors such as spatially nonhomogeneous periodic oscillations and spatially nonhomogeneous quasi-periodic oscillations could occur.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.