Abstract
There are numerous non-smooth factors in railway vehicle systems, such as flange impact, dry friction, creep force, and so on. Such non-smooth factors heavily affect the dynamical behavior of the railway systems. In this paper, we investigate and mathematically analyze the double grazing bifurcations of the railway wheelset systems with flange contact. Two types of models of flange impact are considered, one is a rigid impact model and the other is a soft impact model. First, we derive Poincaré maps near the grazing trajectory by the Poincaré-section discontinuity mapping (PDM) approach for the two impact models. Then, we analyze and compare the near grazing dynamics of the two models. It is shown that in the rigid impact model the stable periodic motion of the railway wheelset system translates into a chaotic motion after the grazing bifurcation, while in the soft impact model a pitchfork bifurcation occurs and the system tends to the chaotic state through a period doubling bifurcation. Our results also extend the applicability of the PDM of one constraint surface to that of two constraint surfaces for autonomous systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.