Abstract

This paper describes the specification, estimation and comparison of double generalized linear compound Poisson models based on the likelihood paradigm. The models are motivated by insurance applications, where the distribution of the response variable is composed by a degenerate distribution at the origin and a continuous distribution on the positive real line. We present maximum likelihood and restricted maximum likelihood algorithms for parameter estimation, with emphasis to the analysis of insurance data. Simulation studies are employed to evaluate the bias and consistency of the estimators in a finite sample framework. The simulation studies are also used to validate the fitting algorithms and check the computational implementation. Furthermore, we investigate the impact of an unsuitable choice for the response variable distribution on both mean and dispersion parameter estimates. We provide R implementation and illustrate the application of double generalized linear compound Poisson models using a data set about car insurances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.