Abstract

The Helium-3 shortage and the growing interest in neutron science constitute a driving factor in developing new neutron detection technologies. In this work, we report the development of a double-GEM detector prototype that uses a 10B4C layer as a neutron converter material. GEANT4 simulations were performed predicting an efficiency of (3.14 ± 0.10)%, agreeing within 2.7σ with the experimental and analytic detection efficiencies obtained by the detector when tested in a 41.8 meV thermal neutron beam. The detector is position sensitive, equipped with a 256+256 strip readout connected to resistive chains, and achieves a spatial resolution better than 3 mm. The gain stability over time was also measured with a fluctuation of about 0.2% h-1 of the signal amplitude. A simple data acquisition with only 5 electronic channels is sufficient to operate this detector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.