Abstract

A DNA-templated copper nanoparticle (CuNP) probe has been developed for the determination of the human immunodeficiency virus oligonucleotide (HIV-DNA). The function of the probe relies on affinity binding-induced DNA hybridization associated with the use of double G-quadruplexes. Double-stranded DNA(dsDNA) with poly(AT-TA) bases was used as a template for synthesis of dsDNA-CuNPs. These have weak fluorescence. In the next step, two G-rich sequences that are linked to both sides of the ds-DNA are locked by HIV complementary DNA (cDNA). If HIV-DNA is introduced, it will hybridize with cDNA, thereby transforming the two G-rich sequences into G-quadruplexes. This enhances the fluorescence of the adjacent dsDNA-CuNPs. Fluorescence increases linearly in the 1 to 200 and 250-1000nM HIV-DNA concentration range, and the detection limit is 13 pM. This enzyme-free fluorometric assay is time-saving, easily operated, and therefore has large potential in biosensing because it may be extended to various other DNA targets. Graphic abstract Double-strand DNA-templated copper nanoparticles (DNA-CuNPs) have weak fluorescence. When Human Immunodeficiency Virus oligonucleotide (HIV-DNA) is added, it completely hybridized with HIV complementary DNA (cDNA). As a result, the two exposed G-rich sequences aretransformed into G-quadruplexes, and an apparent increase in the fluorescence intensity can be observed. (AA: ascorbic acid).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call