Abstract

Data envelopment analysis (DEA) is a mathematical programming approach with widespread applications in productivity and efficiency analysis. Compared with traditional DEA models, two-stage DEA models show the performance of each process and make available more information for decision making. In an article by Kao and Liu, models were proposed for combining a two-stage process to achieve overall fuzzy efficiency measures. Their method follows the simple geometric average approach and uses the product of two efficiencies. The present article applies a different angle for efficiency analysis in the two-stage fuzzy DEA. We suggest that the overall efficiency score of a decision-making unit (DMU) is defined as total weight of stage efficiencies, not as the simple product of their efficiency. Moreover, the proposed fuzzy DEA models are different from the model by Kao and Liu for fuzzy data in that our models are linear without the need for additional changes in variables and use the same set of constraints to measure the efficiency of DMUs with fuzzy input and output data. While the models by Kao and Liu are a nonlinear optimization problem that need additional changes in variables, and use different sets of constraints to measure fuzzy efficiencies. Additionally, our proposed approach evaluates the performance of DMUs from both optimistic and pessimistic viewpoints. Finally, using the proposed approach, the Taiwanese non-life insurance company problem will be investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.