Abstract

The influence of individual impurities of Fe on the electronic properties of topological insulator Bi2Se3 is studied by Scanning Tunneling Microscopy. The microscope tip is used in order to remotely charge/discharge Fe impurities. The charging process is shown to depend on the impurity location in the crystallographic unit cell, on the presence of other Fe impurities in the close vicinity, and on the overall doping level of the crystal. We present a qualitative explanation of the observed phenomena in terms of tip-induced local band bending. Our observations evidence that the specific impurity neighborhood and the position of the Fermi energy with respect to both the Dirac point and bulk bands have to be taken into account when considering the electron scattering on the disorder in topological insulators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call