Abstract

As a preprocessing step, hyperspectral image (HSI) restoration plays a critical role in many subsequent applications. Recently, based on the framework of subspace representation and low-rank matrix/tensor factorization (LRMF/LRTF), many single-factor-regularized methods add various regularizations on the spatial factor to characterize its spatial prior knowledge. However, these methods neglect the common characteristics among different bands and the spectral continuity of HSIs. To tackle this issue, this article establishes a bridge between the factor-based regularization and the HSI priors and proposes a double-factor-regularized LRTF model for HSI mixed noise removal. The proposed model employs LRTF to characterize the spectral global low rankness, introduces a weighted group sparsity constraint on the spatial difference images (SpatDIs) of the spatial factor to promote the group sparsity in the SpatDIs of HSIs, and suggests a continuity constraint on the spectral factor to promote the spectral continuity of HSIs. Moreover, we develop a proximal alternating minimization-based algorithm to solve the proposed model. Extensive experiments conducted on the simulated and real HSIs demonstrate that the proposed method has superior performance on mixed noise removal compared with the state-of-the-art methods based on subspace representation, noise modeling, and LRMF/LRTF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call