Abstract

We establish an asymptotic formula for the double exponential map operator on affine symmetric spaces. This operator plays an important role in the geometric calculus of symbols of (pseudo)differential operators on manifolds with connection, whose foundations were laid by Sharafutdinov. To obtain this result, we essentially use the structural theory of symmetric spaces and techniques of the Lie group theory. One of the key moments is an application of the Campbell-Hausdorff series in Dynkin form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.