Abstract
AbstractIn this work a double exponential time inseparability result is proven for a finitely axiomatizable first order theory Q+. The theory, subset of Presburger theory of addition S+, is the additive fragment of Robinson system Q. We prove that every set that separates Q+ from the logically false sentences of addition is not recognizable by any Turing machine working in double exponential time. The lower bound is given both in the non-deterministic and in the linear alternating time models.The result implies also that any theory of addition that is consistent with Q+—in particular any theory contained in S+—is at least double exponential time difficult. Our inseparability result is an improvement on the known lower bounds for arithmetic theories.Our proof uses a refinement and adaptation of the technique that Fischer and Rabin used to prove the difficulty of S+. Our version of the technique can be applied to any incomplete finitely axiomatizable system in which all of the necessary properties of addition are provable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.