Abstract

In this article, a higher order indirect adaptive iterative learning control (HO-iAILC) scheme is developed for nonlinear nonaffine systems. The inner loop adopts a P -type controller whose set-point is updated iteratively by learning from the iterations. To this end, an ideal nonlinear learning control law is designed in the outer loop. It is then transferred to a linear parametric-learning controller with a corresponding parameter estimation law by introducing an iterative dynamic linearization (IDL) method. This IDL method is also used to gain an iterative linear data model of the nonlinear system. A parameter iterative updating algorithm is utilized for estimating the unknown parameters of the obtained linear data model. Finally, the HO-iAILC is presented that utilizes additional error information to improve the control performance and employs two iterative adaptive mechanisms to deal with uncertainties. The convergence of the proposed HO-iAILC scheme is proved by using two basic mathematical tools, namely: 1) contraction mapping and 2) mathematical induction. Simulation studies are conducted for the verification of the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.