Abstract

This paper describes a novel inlet flow conditioning concept that significantly improves ducted fans’ performance and controllability. High angle-of-attack operation of ducted fans is very common in vertical-takeoff-and-landing systems. The new concept named double-ducted fan (DDF) uses a secondary shroud to control inlet lip-separation-related momentum deficit at the inlet of the fan rotor during edgewise flight. The DDF is helpful in a wide edgewise flight velocity range, and its corrective aerodynamic effect becomes more pronounced with increasing flight velocity. A conventional baseline duct operating at 90 deg angle of attack is compared to other novel double-ducted fan designs via three-dimensional, viscous, and turbulent flow computations. A custom actuator-disk model replaces the zonal computation of the complex and three-dimensional rotor flowfield in the rotating frame of reference. Both hover and edgewise flight conditions are considered around the ducted fan unit and inside the ducts. Significant improvements from several novel ducted fan designs are in the areas of vertical thrust enhancement, nose-up pitching moment reduction, and recovery of fan through-flow mass flow rate in a wide horizontal flight range. A variable DDF design, a partial DDF design, and a fan-in-wing implementation of the DDF are introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.