Abstract

This paper studies the double-diffusive natural convection near a vertical wavy truncated cone in a non-Newtonian fluid saturated porous medium with thermal and mass stratification. The surface of the truncated cone is kept at constant wall temperature and concentration. A coordinate transformation is employed to transform the complex wavy surface to a smooth surface, and the obtained boundary-layer equations are then solved by the cubic spline collocation method. Effects of thermal and concentration stratification parameters, Lewis number, buoyancy ratio, power-law index, and wavy geometry on the heat and mass transfer characteristics are studied. Results show that the streamwise distributions of the local Nusselt number and the local Sherwood number are harmonic curves with a wave number twice the wave number of the surface of the vertical wavy truncated cone. An increase in the power-law index leads to a smaller fluctuation of the local Nusselt and Sherwood numbers. Moreover, increasing the thermal and concentration stratification parameter decreases the buoyancy force and retards the flow, thus decreasing the heat and mass transfer rates between the fluid and the wavy surface of the vertical truncated cone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call