Abstract

The problem of steady, laminar, double-diffusive natural convection boundary-layer flow of a micropolar fluid over a vertical permeable semi-infinite plate embedded in a uniform porous medium in the presence of non-Darcian and thermal dispersion effects is investigated. Also, the model problem allows for possible heat generation or absorption and first-order chemical reaction effects. Both the wall temperature and wall concentration are assumed to have linear variations with the distance along the plate. Appropriate transformations are employed to transform the governing differential equations into a non-similar form that can be solved as an initial-value problem. The resulting equations are solved numerically by an efficient implicit, iterative, finite-difference scheme. The obtained results are checked against previously published work on special cases of the problem and are found to be in good agreement. A parametric study illustrating the influence of the microrotation material parameter, concentration to thermal buoyancy ratio, chemical reaction parameter, Schmidt number, heat generation or absorption and the surface suction or injection effects on the fluid velocity, microrotation, temperature and solute concentration as well as the local skin-friction coefficient, local wall microrotation coefficient and the local wall heat and mass transfer coefficients is conducted. The results of this parametric study are shown graphically and the physical aspects of the problem are highlighted and discussed. * * * Nomenclature

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call