Abstract

An approach was developed to describe the double-differential spectra of secondary particles formed in heavy-ion reactions. Griffin model of nonequilibrium processes was used to account for the nonequilibrium stage of the compound system formation. Simulation of de-excitation of the compound system was carried out using the Monte-Carlo method. Analysis of the probability of neutron, proton, and α-particle emission was performed both in equilibrium, and in the pre-equilibrium stages of the process. Fission and γ-ray emission were also considered after equilibration. The analysis of the experimental data on the double-differential cross sections of p, α particles for the 16O + 116Sn reaction at the oxygen energy E = 130 and 250 MeV were performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.