Abstract

AbstractAerogels owe their high thermal insulation and other unique properties to their nanostructure configuration. However, controlling the aerogels' morphology is always a scientific challenge. In this study, double dianhydride backbone (double backbone) polyimide aerogels with tailored nanostructure assembly are created for the first time. This is achieved by controlled polymerization reaction of oligomers with distinct dianhydride monomers. Combining the two oligomers through a controlled polymerization reaction is a successful strategy for tailoring the aerogels nanostructure assembly as well as other properties. The fabricated double backbone aerogel presents 40% reduced thermal conductivity of 19.7 mW mK−1 over previously studied polyimide aerogels along with the compression modulus of 1.64 MPa at a relatively low density of 0.068 g cm−3. Such low thermal conductivity is comparable with the inorganic counterparts. Light in weight and high thermally insulated polyimide aerogels with suitable mechanical properties and high service temperature are an appropriate replacement for current fireproof insulation materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.