Abstract

Toll-like receptor (TLR) 2 and 4 signalling pathways are central to the body’s defence against invading pathogens during pneumococcal meningitis. Whereas several studies support their importance in innate immunity, thereby preventing host mortality, any role in protecting neurological function during meningeal infection is ill-understood. Here we investigated both the acute immunological reaction and the long-term neurobehavioural consequences of experimental pneumococcal meningitis in mice lacking both TLR2 and TLR4. The absence of these TLRs significantly impaired survival in mice inoculated intracerebroventricularly with Streptococcus pneumoniae. During the acute phase of infection, TLR2/4-deficient mice had lower cerebrospinal fluid concentrations of interleukin-1β, and higher interferon-γ, than their wild-type counterparts. After antibiotic cure, TLR2/4 double deficiency was associated with aggravation of behavioural impairment in mice, as shown by diurnal hypolocomotion throughout the adaptation phases in the Intellicage of TLR-deficient mice compared to their wild-type counterparts. While TLR2/4 double deficiency did not affect the cognitive ability of mice in a patrolling task, it aggravated the impairment of cognitive flexibility. We conclude that TLR2 and TLR4 are central to regulating the host inflammatory response in pneumococcal meningitis, which may mediate diverse compensatory mechanisms that protect the host not only against mortality but also long-term neurological complications.

Highlights

  • Toll-like receptor (TLR) 2 and 4 signalling pathways are central to the body’s defence against invading pathogens during pneumococcal meningitis

  • Invasive infection of the central nervous system (CNS) by Streptococcus pneumoniae often provokes a suppurative inflammation in the arachnoid, subarachnoid space and pia mater that is known as pneumococcal meningitis

  • Using an established mouse model, the present study demonstrates a partial role for a TLR2- and TLR4-mediated acute inflammatory response in modulating the long-term neurological outcomes seen in mice that have survived pneumococcal meningitis due to CEFT treatment

Read more

Summary

Introduction

Toll-like receptor (TLR) 2 and 4 signalling pathways are central to the body’s defence against invading pathogens during pneumococcal meningitis. Whereas several studies support their importance in innate immunity, thereby preventing host mortality, any role in protecting neurological function during meningeal infection is ill-understood We investigated both the acute immunological reaction and the long-term neurobehavioural consequences of experimental pneumococcal meningitis in mice lacking both TLR2 and TLR4. Genetic deletion of the TLR downstream effector, myeloid differentiation primary response 88 (MyD88) protein, interferes with interleukin (IL)-1 and IL-18 signalling[15] and causes severe deficits in immune responses[16,17], as well as hearing impairment[18], in experimental pneumococcal meningitis Together, these studies suggest a link between host bacterial clearance and disease severity due to a dysregulated host inflammatory response in mice with disrupted TLR2/4 signalling. We hypothesised that the absence of both the TLR2 and TLR4 signalling pathways would alter the innate immune response during acute pneumococcal meningitis, in part by modulating the production of inflammatory cytokines, which in turn would impact upon the long-term neurological outcomes resulting from the disease

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call