Abstract

Abstract It is often envisaged that dense filament material lies in the dips of magnetic field lines belonging to either a sheared arcade or a magnetic flux rope. But it is also debated which configuration correctly depicts filaments’ magnetic structure, due to our incapacity to measure the coronal magnetic field. In this paper, we address this issue by employing mass motions in an active-region filament to diagnose its magnetic structure. The disturbance in the filament was driven by a surge initiated at the filament’s eastern end in the NOAA active region 12685, which was observed by the 1 m New Vacuum Solar Telescope in the Hα line-center and line wing (±0.4 Å). Filament material predominately exhibits two kinds of motions, namely, rotation about the spine and longitudinal oscillation along the spine. The former is evidenced by antisymmetric Doppler shifts about the spine; the latter features a dynamic barb with mass extending away from the Hα spine until the transversal edge of the EUV filament channel. The longitudinal oscillation in the eastern section of the filament is distinct from that in the west, implying that the underlying field lines have different lengths and curvature radii. The composite motions of filament material suggest a double-decker host structure with mixed signs of helicity, comprising a flux rope atop a sheared-arcade system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call