Abstract

Double-crystalline poly(L-lactide)-block-poly(vinylidene fluoride)-block-poly(L-lactide) (PLLA-b-PVDF-b-PLLA) triblock copolymers were successfully synthesized through ring opening polymerization of L-lactide and benzoyl peroxide initiated polymerization of vinylidene fluoride, followed by copper(I)-catalyzed azide–alkyne coupling of the functionalized PLLA and PVDF. Three triblock copolymers with different block ratios were prepared via this synthetic approach. The block copolymers were miscible in the melt, and an alternating crystalline lamellar nanostructure was formed upon crystallization from the homogeneous melt. Crystallization behavior of the PLLA component depends strongly on the block composition. The crystallization temperature of the lower temperature crystallizing PLLA block increased considerably with respect to its parent homopolymer for rather symmetric block copolymers, indicating a strong nucleation effect, while on the other hand asymmetric block copolymers with low PLLA content demonstrated a large decrease of crystallization temperature, due to a fractionated crystallization process. A confined crystallization mechanism for the PLLA blocks was suggested, indicated by the low degree of crystallization compared to the respective homopolymers, and confirmed by microstructure analysis performed during isothermal crystallization. Contrary to PLLA, crystallization of the higher temperature crystallizing PVDF component within the block copolymer was not influenced by the block composition and similar crystallization behavior was observed with respect to PVDF homopolymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.