Abstract

A projection morphism ρ: G1 → G2 of finite graphs maps the vertex-set of G1 onto the vertex-set of G2, and preserves adjacency. As an example, if each vertex v of the dodecahedron graph D is identified with its unique antipodal vertex v¯ (which has distance 5 from v) then this induces an identification of antipodal pairs of edges, and gives a (2:1)-projection p: D → P where P is the Petersen graph.In this paper a category-theoretical approach to graphs is used to define and study such double cover projections. An upper bound is found for the number of distinct double covers ρ: G1 → G2 for a given graph G2. A classification theorem for double cover projections is obtained, and it is shown that the n–dimensional octahedron graph K2,2,…,2 plays the role of universal object.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.