Abstract
This study addresses the challenge of speed control in permanent magnet synchronous motors (PMSMs), particularly in complex industrial applications. The research investigates the control of rotor speed in an electric-traction drive scenario. The setup involves an 8kW high-voltage battery powering a 35 kW PMSM through a controlled 3-phase (3-φ ) converter. Sensor feedback provides torque, currents, and voltage data, while a resolver captures speed and position information. The control strategy employs a two-loop algorithm. The outer loop uses a Proportional–integral to achieve zero steady-state error in this design (PI) controller for speed control, while two PI controllers are utilized to govern stator current in the Q and D directions. The input battery is very important in this design to achieve zero steady-state error. During a 0.2 s simulation, the rotor speed demand is incrementally raised from 0 to 1200 RPM. The proposed approach is implemented and verified using the Matlab2020a Simulink environment. The simulation results prove the efficacy of the proposed algorithm efficiently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.