Abstract
Soft matter catalyst system allowing controllable manipulation of the organized nanostructure and surface property holds the potential for renewable energy. Here we demonstrate the construction of a continuously regenerative hydrogel photocatalyst that confines the metal-thiolate coordination induced nanocavity into robust micro-sized spongy network for water splitting. Thanks to low vaporization enthalpy and fast proton mobility of water molecules confining in nanocavities, the composite delivers outstanding photocatalytic H2 production (TOF of 4568 H2 h−1), nearly 4.5 times higher than that on the catalyst without confinements. Incorporating with conductive polymers, the TOF is substantially improved to 7819 H2 h−1. Impressively, continuous regeneration is for the first time achieved with H2 production retention improved from 24 % to 72 % by regulating optically-active catalyst surfaces. This optical regeneration method provides new avenues for sustainable solar energy conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.