Abstract

A series of double-headed nucleosides were synthesized using the Sonogashira cross-coupling reaction. In the reactions, additional nucleobases (thymine, cytosine, adenine, or guanine) were attached to the 5-position of 2'-deoxyuridine or 2'-deoxycytidine through a propyne linker. The modified nucleosides were incorporated into oligonucleotides, and these were combined in different duplexes that were analyzed by thermal denaturation studies. All of the monomers were well tolerated in the DNA duplexes and induced only small changes in the thermal stability. Consecutive incorporations of the monomers led to increases in duplex stability owing to increased stacking interactions. The modified nucleotide monomers maintained the Watson-Crick base pair fidelity. Stable duplexes were observed with heavily modified oligonucleotides featuring 14 consecutive incorporations of different double-headed nucleotide monomers. Thus, modified duplexes with an array of nucleobases on the exterior of the duplex were designed. Molecular dynamics simulations demonstrated that the additional nucleobases could expose their Watson-Crick and/or Hoogsteen faces for recognition in the major groove. This presentation of nucleobases may find applications in providing molecular information without unwinding the duplex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.