Abstract

This work was performed to examine an idea about full chelation of Iron (Fe) by well-known favipiravir (Fav) as a possible mechanism of action for medication of COVID-19 patients. To this aim, formations of Fe- mediated dimers of Fav were investigated by performing density functional theory (DFT) computations of electronic and structural features for singular and dimer models. The results indicated that the models of dimers were suitable for formation, in which two cis (D1) and trans (D2) models were obtained regarding the configurations of two Fav counterparts towards each other. Energy results indicated that formation of D1 was slightly more favorable than formation of D2. Molecular orbital features affirmed hypothesized interacting sites of Fav for Fe-mediated dimers formations, in which atomic charges and other molecular orbital related representations affirmed such achievements. Moreover, detection of such dimer formation was also possible by monitoring variations of molecular orbitals features. As a consequence, formations of Fe-mediated dimers of Fav could be achievable for possible removal of excess of Fe as a proposed mechanism of action for Fav in medication of COVID-19 patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.