Abstract

The contact recombination from both singlet and triplet states of a radical pair is studied assuming that the spin conversion is carried out by the fast transversal relaxation and Delta g mechanism. The alternative HFI mechanism is neglected as being much weaker in rather large magnetic fields. The magnetic-field-dependent quantum yields of the singlet and triplet recombination products, as well as of the free radical production, are calculated for any initial spin state and arbitrary separation of radicals in a pair. The magnetic field effect is traced and its diffusional (viscosity) dependence is specified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.