Abstract

This paper proposes a double chains quantum genetic algorithm (DCQGA), and shows its application in designing neuro-fuzzy controller. In this algorithm, the chromosomes are composed of qubits whose probability amplitudes comprise gene chains. The quantum chromosomes are evolved by quantum rotation gates, and mutated by quantum non-gates. For the direction of rotation angle of quantum rotation gates, a simple determining method is proposed. The magnitude of rotation angle is computed by integrating the gradient of the fitness function. Furthermore, a normalized neuro-fuzzy controller (NNFC) is constructed and designed automatically by the proposed algorithm. Application of the DCQGA-designed NNFC to real-time control of an inverted pendulum system is discussed. Experimental results demonstrate that the designed NNFC has very satisfactory performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.