Abstract
The primary objective of this research was to evaluate the safety and feasibility of an innovative double-branched stent graft system employing four-stage deployment technology for aortic arch repair in porcine models. The double-branched stent graft system consisted of a proximal polyester artificial blood vessel, the main and double-branched stent grafts and a delivery system. We utilized 12 healthy pigs as experimental animals (6 per group). Postimplantation, samples were collected at 90 and 180 days after the operations. Preoperative and postoperative imaging and intraoperative arterial blood gas analyses were performed. After the pigs were euthanized, the implanted product, surrounding tissue and major organs were collected for pathological analysis. The technical success rate of the stent graft implants was 100% (12/12). All animals survived to the experimental end point. Perioperative assessments showed intact stent grafts, and imaging features at the end of the follow-up period revealed neither endoleak nor device migration. No major adverse cardiovascular events were observed during the postoperative follow-up period. Pathological examinations confirmed the satisfactory biocompatibility of the stent graft. This innovative double-branched stent graft system with four-stage deployment technology was affirmed as a safe and feasible option for aortic arch repair in accordance with our preclinical evaluation with porcine models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Interdisciplinary cardiovascular and thoracic surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.