Abstract

Glass-ceramics are well known for the excellent combination properties provided by their components, a glassy matrix and crystalline phases, and have promising applications in the immobilization and detoxification of solid waste containing toxic metals. Glass-ceramic products were successfully synthesized in CaO-MgO-SiO2-Al2O3 -Cr2O3 system. Two key measures – partitioning ratio of Cr in the spinel and Cr leaching ratio – were used to investigate the mechanism of Cr immobilization in the glass-ceramic products. The results of powder X-ray diffraction revealed that both spinel and diopside were major crystalline phases in the products. The value of x in the MgCrxAl2-xO4 spinel was highly related to the amount of Cr2O3 added to the glass-ceramic system. As Cr2O3 content increased, the proportion of spinel phase increased, while that of glass phase decreased. The partitioning ratio of Cr in spinel phase was about 70% for 2wt.% Cr2O3, and increased to 90% when loaded with 10wt.% of Cr2O3. According to the results of the prolonged toxicity characteristic leaching procedure, the Cr leaching ratio decreased with the increase of Cr partitioning ratio into the spinel phase. The findings of this study clearly indicate that glass-ceramic formed by spinel structure and residual glass successfully immobilized Cr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call