Abstract

Organoids are 3D cultures of self-organized adult or pluripotent stem cells with an epithelial membrane enclosing a defined fluid-filled lumen. These organoids have been demonstrated with a wide range of organotypic tissue types, but the enclosed nature of the structure restricts access to the lumen and apical surface of the cell membrane. To increase the potential applications of organoids, new technologies are required to provide access to the lumen of the organoid and apical surface of the epithelial cell membrane to enable new biomedical studies. This chapter details a method to access the lumen and apical surface of an organoid utilizing a double-barrel pulled glass capillary and pressure-based pump. The organoid perfusion system uses a three-axis micromanipulator to position the double-barrel capillary to pierce the organoid with the tip of the capillary. Each barrel of the double-barrel capillary is controlled independently with the pressure-based pump to allow injection and removal of material into and from the lumen. Additionally, the organoid is immobilized with a custom-designed PDMS organoid holder. The design of the components for the organoid perfusion system and details on their use are presented here and can be utilized as the basis to enable a wide range of organoid studies including but not limited to modifying luminal contents and apical cell membrane interactions during organoid cultures, recapitulation of physiological flow within the normally static organoid lumen, and effects of mechanical strain on organoid cell development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call