Abstract

PurposeAutomatic segmentation of brain tumor from medical images is a challenging task because of tumor's uneven and irregular shapes. In this paper, the authors propose an attention-based nested segmentation network, named DAU-Net. In total, two types of attention mechanisms are introduced to make the U-Net network focus on the key feature regions. The proposed network has a deep supervised encoder–decoder architecture and a redesigned dense skip connection. DAU-Net introduces an attention mechanism between convolutional blocks so that the features extracted at different levels can be merged with a task-related selection.Design/methodology/approachIn the coding layer, the authors designed a channel attention module. It marks the importance of each feature graph in the segmentation task. In the decoding layer, the authors designed a spatial attention module. It marks the importance of different regional features. And by fusing features at different scales in the same coding layer, the network can fully extract the detailed information of the original image and learn more tumor boundary information.FindingsTo verify the effectiveness of the DAU-Net, experiments were carried out on the BRATS 2018 brain tumor magnetic resonance imaging (MRI) database. The segmentation results show that the proposed method has a high accuracy, with a Dice similarity coefficient (DSC) of 89% in the complete tumor, which is an improvement of 8.04 and 4.02%, compared with fully convolutional network (FCN) and U-Net, respectively.Originality/valueThe experimental results show that the proposed method has good performance in the segmentation of brain tumors. The proposed method has potential clinical applicability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call