Abstract

TROSY-based NMR relaxation dispersion experiments that measure the decay of double- and zero-quantum (1)H-(15)N coherences as a function of applied (1)H and (15)N radio frequency (rf) fields are presented for studying millisecond dynamic processes in proteins. These experiments are complementary to existing approaches that measure dispersions of single-quantum (15)N and (1)H magnetization. When combined, data from all four coherences provide a more quantitative picture of dynamics, making it possible to distinguish, for example, between two-site and more complex exchange processes. In addition, a TROSY-based pulse scheme is described for measuring the relaxation of amide (1)H single-quantum magnetization, obtained by a simple modification of the multiple-quantum experiments. The new methodology is applied to a point mutant of the Fyn SH3 domain that exchanges between folded and unfolded states at 25 degrees C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.