Abstract
We obtain a transform that relates the standard Bessel-Gaussian (BG) beams with BG beams described by the Bessel function of a half-integer order and quadratic radial dependence in the argument. We also study square vortex BG beams, described by the square of the Bessel function, and the products of two vortex BG beams (double-BG beams), described by a product of two different integer-order Bessel functions. To describe the propagation of these beams in free space, we derive expressions as series of products of three Bessel functions. In addition, a vortex-free power-function BG beam of the mth order is obtained, which upon propagation in free space becomes a finite superposition of similar vortex-free power-function BG beams of the orders from 0 to m. Extending the set of finite-energy vortex beams with an orbital angular momentum is useful in searching for stable light beams for probing the turbulent atmosphere and for wireless optical communications. Such beams can be used in micromachines for controlling the movements of particles simultaneously along several light rings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.