Abstract

The acronym DAT stands for double acting tanker, a concept where the ship is designed to run astern in heavy ice conditions while remaining hydrodynamically efficient for ahead propulsion in open water conditions. Two large aframax DATs - 106.000 dwt (deadweight tons) each - have been delivered by Sumitomo Heavy Industries to Fortum Oil and Gas OY. They are the first crude carriers built according to the DAT principle and also the first using pod propulsion from the beginning (Fig. 1). They will also be the world's largest crude carriers with ice class 1A super and are primarily intended for year-round transportation of North Sea crude to Fortum's refineries in the Gulf of Finland. The ships were appointed ‘ship of the year’ in Japan in 2003. SSPA was contracted by Sumitomo Heavy Industries to perform model tests. A comprehensive open water model test programme was used to investigate aspects of resistance and propulsion, manoeuvring, and cavitation performance. As the ship is designed to operate both in ahead and astern conditions for prolonged periods of time, most tests were performed both ahead and astern. Also, a simulation study of dynamic positioning at buoy or floating production, storage offshore (FPSO) loading was made by SSPA. Comprehensive tests of the ship's performance in ice were performed in the ice tank at MARC (Masa-Yards Artic Research Centre). The eight-month model testing and development campaign resulted in a ship with excellent propulsion and manoeuvring performance, especially with regard to the high ice class. Sea trials carried out with ship in August 2002 confirmed the results of the model test. Interesting experiences of the model test campaign and comparison between model test and sea trial results are presented, as well as some examples of single-point mooring simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.