Abstract
Most visual simultaneous localization and mapping (SLAM) systems are based on the assumption of a static environment in autonomous vehicles. However, when dynamic objects, particularly vehicles, occupy a large portion of the image, the localization accuracy of the system decreases significantly. To mitigate this challenge, this paper unveils DOT-SLAM, a novel stereo visual SLAM system that integrates dynamic object tracking through graph optimization. By integrating dynamic object pose estimation into the SLAM system, the system can effectively utilize both foreground and background points for ego vehicle localization and obtain a static feature points map. To rectify the inaccuracies in depth estimation from stereo disparity directly on the foreground points of dynamic objects due to their self-similarity characteristics, a coarse-to-fine depth estimation method based on camera-road plane geometry is presented. This method uses rough depth to guide fine stereo matching, thereby obtaining the 3 dimensions (3D)spatial positions of feature points on dynamic objects. Subsequently, by establishing constraints on the dynamic object's pose using the road plane and non-holonomic constraints (NHCs) of the vehicle, reducing the initial pose uncertainty of dynamic objects leads to more accurate dynamic object initialization. Finally, by considering foreground points, background points, the local road plane, the ego vehicle pose, and dynamic object poses as optimization nodes, through the establishment and joint optimization of a nonlinear model based on graph optimization, accurate six degrees of freedom (DoFs) pose estimations are obtained for both the ego vehicle and dynamic objects. Experimental validation on the KITTI-360 dataset demonstrates that DOT-SLAM effectively utilizes features from the background and dynamic objects in the environment, resulting in more accurate vehicle trajectory estimation and a static environment map. Results obtained from a real-world dataset test reinforce the effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.