Abstract

A sound notion of the neighborhood of a point is essential for analyzing dot patterns. The past work in this direction has concentrated on identifying pairs of points that are neighbors. Examples of such methods include those based on a fixed radius, k-nearest neighbors, minimal spanning tree, relative neighborhood graph, and the Gabriel graph. This correspondence considers the use of the region enclosed by a point's Voronoi polygon as its neighborhood. It is argued that the Voronoi polygons possess intuitively appealing characteristics, as would be expected from the neighborhood of a point. Geometrical characteristics of the Voronoi neighborhood are used as features in dot pattern processing. Procedures for segmentation, matching, and perceptual border extraction using the Voronoi neighborhood are outlined. Extensions of the Voronoi definition to other domains are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call